关键词 |
硫自养滤材,深床滤池反硝化滤料,硫自养反硝化填料,除磷脱氮硫自养填料 |
面向地区 |
全国 |
滤料类型 |
陶粒 |
用途 |
水过滤 |
材质 |
陶瓷 |
适用对象 |
水 |
性能 |
耐酸 |
硫自养反硝化滤池滤料,应该很多朋友不了解这个产品,普通的反硝化滤池滤料为石英砂滤料和陶粒滤料,近两年新型研发出来的硫自养滤料。反硝化滤池无需投加有机碳源,可有效避免由于水质波动带来的COD二次污染问题同时,脱氮基于自养反硝化原理,污泥产率低,可有效降低反冲洗频次,实现节能。另外,相较于有机碳源作为电子供体,固体缓释型电子供体更为廉价,并易于储藏和运输。硫自养滤料整体上可显著降低深度反硝化工段的运行成本。
硫自养滤料很多人看上去会觉得和陶粒滤料的外观很像,确实是从外观大致来看有些相似,但是实际是两种不同的产品,原料和工艺就不同。硫自养滤料表面微孔发达且分布合理,平均微孔直径约为200微米,生长在微孔内的微生物不易流失,即使长时间不运转也能保持菌种,使得曝气生物滤池可间断运行;同时,比表面积大,可附着生长、繁殖大量微生物,能使深床反硝化滤池的容积负荷增大,降解速率显著提高;另外,该产品质地轻、强度高、耐摩擦、耐冲洗、不向水体释放有毒有害物,具有良好的物理、化学和水力学特性,可适应于不同污水净化的要求。现代水处理工艺充分利用了这些特性,使其成为水处理特别是污水、微污染水源水生物预处理以及给水过滤技术的滤料。
反硝化滤池采用单质硫及铁复合矿物作为滤料。复合硫自养滤料除具备截留悬浮污染物功能也作为缓释型电子供体驱动其附着的自养反硝化细菌从而实现脱氮。选用的复合硫自养滤料中包括在反硝化过程中能够产酸和产碱的两大类型,并通过复合比例的优化设计,能够使得反硝化脱氮过程中pH值始终保持性范围,从而获得较高脱氮速率,并满足出水pH值指标的要求。
温度对于硫自养反硝化过程是一个重要的环境因素,对细菌的生长和反硝化的速率有明显的影响。车轩等研究提出脱氮硫杆菌适的生长温度为29.5 ℃,适的反硝化温度为32.8 ℃;张晓晨等试验发现温度在30 ℃~35 ℃条件下有高的硝酸盐去除率;Donovan等指出脱氮硫杆菌在28 ℃~32 ℃范围内活性较好;牛建敏等筛选出的菌种在20.0 ℃~35.0 ℃范围内有较好的效果。由此可知,硫自养反硝化的适温度在30 ℃左右。
硫自养反硝化的优缺点
1、填料板结堵塞问题,生物膜容易堵塞填料,使脱氮效率下降,需要频繁反洗;
2、出水硫酸盐含量增加;
3、填料成本较高,一次性投入大!
硫自养反硝化的工艺控制难点在哪
3.低温会抑制反硝化菌系统的脱氮性能,进而导致脱氮速率降低。为了提升低温条件下硫自养反硝化系统的脱氮性能,可以从电子供体(硫源)和异样反硝化过程两方面着手。硫代硫酸盐作为一种可溶性硫,比疏水性单质硫更易被硫氧化菌利用,常温下硫代硫酸盐作为电子供体时硝态氮的还原速率为单质硫的 10倍。硫自养反硝化混合菌体系中含有一定量的异养反硝化菌,而此类细菌具有生长快、易在短期内形成大量微生物的优势,可能会对低温表现出更好的抗性。因此,低温条件下,利用硫代硫酸盐或有机物作为电子供体可能会提升反硝化系统的脱氮能力。
异养反硝化需要投加有机碳源,这不仅增加了处理费用而且还可能带来二次污染。 本文采用曝气生物滤池和硫/陶粒自养反硝化滤池的新组合工艺进行脱氮。研究了温度对于曝气生物滤池和硫自养反硝化滤池脱氮的影响。而对碱度(以NaHCO3的形式)、空床接触时间等也进行了研究。研究表明,当温度在15℃以上时,曝气生物滤池对氨氮的去除率在95%以上。但当温度降到10℃、5℃时,氨氮去除率下降到65% -80%、55% - 70%。当进水的水温在5℃-35℃,溶解氧在2-4 mg/L时,硝酸盐氮的去除率在98%以上。低温和高浓度的溶解氧并没有降低硝酸盐氮的去除率。当温度在15℃以上时,由于较高的氨氮和硝酸盐氮的去除率,曝气生物滤池和硫自养反硝化(SCAD)滤池对总氮的去除率在90%以上。但在低温条件下,氨氮去除率的降低是影响总氮去除的一个限制因素。SCAD滤池出水的COD、浊度、UV254的数值都进水。硫酸根离子的产量和硝酸盐氮的降解量之比在7.6-9.5之间,比理论值稍高。在SCAD的出水中,硫酸根离子的浓度随着水温的降低而有升高的趋势。 较高的NaHCO3投加量可以提高硝酸盐氮的去除速率,但是400 mg/L的NaHCO3意味着碱度?饱和‘的发生。在理论碱度的投加量下,硝酸盐氮的去除率在98%以上,但是出水中有亚硝酸盐氮的积累。空床接触时间对氨氮的去除率的影响比硝酸盐氮高,以至于总氮的去除率在较低的空床接触时间下开始下降。 在低温高溶解氧条件下,硝酸盐氮的去除率依然很高,这与传统的低温高溶解氧抑制自养反硝化的观点相矛盾。这个组合工艺对于寒冷地区的生物脱氮具有重要意义。
全国反硝化滤池硫自养滤料热销信息